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FOREWORD 
 
 
The papers included in this part of the Anthology provide basic and tutorial information on the 
coordination of the so-called “Cascaded SPDs” in the context of low-voltage AC power circuits. 
As presented in this part of the anthology, the subject was approached by a combination of 
experiments and theoretical considerations. Interest in the subject arose in the early seventies, 
following the introduction of metal-oxide varistors (Phase 1 papers).  
 
With the concept of “whole house protection” that emerged in the nineties, a new set of 
experiments and numerical simulations focused on issues raised by industry’s choice of offering 
very low limiting voltages for plug-in SPDs, which made effective coordination more difficult.  
Concurrently, more attention was given to the rare but possible scenario of a direct lightning 
flash to a building, raising the threat level to new heights not only for SPDs installed at the 
service entrance, but also for downstream equipment, in particular those SPDs with low limiting 
voltage rating such as plug-in TVSSs (Phase 2 papers). 
 
Industry interest in the matter grew, and resulted in many publications, as shown by the papers 
contributed by the researchers cited in Annex A. For obvious copyright limitations, the papers 
from other researchers cannot be reprinted here. The pre-1985 papers in this Part 8 were 
copyrighted by the IEEE, or were proprietary to the General Electric Company; both graciously 
gave permission for reprinting in this anthology. The post-1985 papers, written thanks to the 
support from EPRI PEAC and the National Institute of Standards and Technology, are in the 
public domain. 
 
The information contained in these papers was based on experiments as well as numerical 
simulations, and were presented at different forums, in the context of different audiences, but all 
on the theme that effective coordination of devices requires coordination of the specifications, in 
particular if the devices are provided by different entities. 
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Surge Voltage Suppression in Residential Power Circuits

François Martzloff
General Electric Company

Schenectady NY
f.martzloff@ieee.org

Reprint, with permission, of declassified General Electric Technical Information Series Report 76CRD092

Significance:
Part 4 – Propagation and coupling of surges
Part 7 – Mitigation techniques
Part 8 – Coordination of cascaded SPDs

Laboratory tests on the effect of distance for coordination between a surge-protective device (SPD) at the service
entrance and an SPD at the end of a branch circuit.

The service entrance SPD, 1960-1970 vintage, consisted of a silicon carbide disc with a series gap.
The branch circuit SPD consisted of a simple MOV disc incorporated in a modified plug-and-receptacle combination,
probably the first attempt at packaging an MOV for residential surge protection.

Tests were performed with a simple generator capable of delivering up to 8 kV peak open-circuit voltage of 2/60 :s
waveform and 2 kA peak short-circuit current of 30/50 :s waveform.  These values – dating back to pre-IEEE 587
consensus waveforms – were at the time deemed to represent a severe surge associated with a lightning flash to the
power system, outside of the residence.

One objective of the tests was to determine the values of surge current and distance between SPDs that produced
the threshold from no sparkover of the service entrance SPD (maximum stress on the MOV) to sparkover, thus
limiting the stress on the MOV.  This was one of the first illustrations of what became a series of experimental and
theoretical studies of the “cascade coordination” concept.
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Coordination of Overvoltage Protection
in Low-Voltage Residential Systems

François Martzloff
General Electric Company

Schenectady NY
f.martzloff@ieee.org

K.E. Crouch
Lightning Technologies

Pittsfield MA

© 1978 IEEE
Reprinted, with permission, from Conference Record, 

Canadian Conference on Communications and Power, 78CH1373-0, 1978

Significance
Part 4 – Propagation and coupling of surges
Part 6 – Tutorials

This paper was presented as a summary tutorial aimed at the French-speaking Canadian community to solicit their
comments on the development of the IEEE Std 587 Guide.  The paper has been translated into English by the
author to make the English-speaking community aware of that paper, which served at that time as one output for
the release of the extensive test results that were reported in the 35-page GE Memo Report – still proprietary at that
time – “Lightning protection in residential AC wiring” (see Part 4 of the anthology).  

The tests were performed by injecting a simulated lightning flash current of unidirectional waveshape into the
grounding system of a simplified residential wiring system, and observing the coupling and induction of oscillatory
surges in the house wiring

Part 8 – Coordination of Cascaded SPDs
Excerpts from the complete test report found in this summary include a discussion of the performance of gapped
arresters, as well as MOVs installed at the service entrance, with coordination with an MOV installed at the end of
branch circuits.
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Reprinted, with permission, from IEEE Transactions on Power Apparatus and Systems, PAS-99, Jan 1980 

First presented at IEEE Summer Meeting, Vancouver, July 1979 
 
 
 

 
Significance: 
Part 4 – Propagation and coupling of surges 
Part 8 – Coordination of cascaded SPDs 
 
This paper presents a summary of two earlier and detailed proprietary General Electric reports describing 
experiments conducted in Schenectady NY and in Pittsfield MA, respectively by Martzloff and Crouch. (These 
have now been declassified by General Electric and are included in this Anthology – see Coordination 1976 
and Propagation 1978.)  The prime purpose of that paper at the time was to report in a non-classified 
platform experimental results that could be useful for the development of IEEE Std 587 (later known as IEEE 
Std C62.41).
 
In the first experiment, a simple test circuit of two branch circuits originating at a typical service entrance paper 
was subjected to relatively high-energy unidirectional impulses, with various combinations of surge-protective 
devices installed at the service panel and/or at the end of the branch circuits.  That 1976 experiment was the 
beginning of recognition of the “cascade coordination” issue that became the subject of intense interest in the 
80’s and 90’s (see the listing of contribution by many authors in Part 1, Section 8). 
 
In the second experiment, the coupling and subsequent propagation of surges was investigated in a more 
complex circuit that included a distribution transformer, service drop, entrance panel, and several branch 
circuits.  The surge was injected in the grounding system, not into the phase conductors.  This 
experiment thus brought new evidence that ring waves can be stimulated by unidirectional surges.  
Nevertheless, the threat was considered at that time as a surge impinging onto the service entrance from the 
utility, not resulting from a direct flash to the building grounding system.  On that latter subject, see Dispersion 
and Role of SPDs. 
 
This paper received the 1982 Paper Award from the Surge-Protective Devices Committee. 
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The Coordination of Transient Protection
for Solid-State Power Conversion Equipment

François Martzloff
Corporate Research and Development

General Electric Company
Schenectady, New York, USA

f.martzloff@ieee.org

© 1982 IEEE
Reprinted, with permission, from Conference Record, 

1982 IEEE/IAS International Semiconductor Power Converter Conference, May 1982.

Significance
Part 6 – Tutorials
Part 8 – Coordination of Cascaded SPDs

This paper was presented as a tutorial aimed at a semiconductor-oriented audience, giving an overview of the origin
of transient overvoltages and of IEEE and IEC documents under consideration in the early eighties, identifying and
categorizing transients. A brief review of available techniques and devices follows, with a description of the
principles of coordinated protection, specific experimental examples, and results reconciling the unknown with the
realities of equipment design.

The themes emphasized that effective protection of sensitive electronic equipment is possible through a systematic
approach where the capability of the equipment is compared to the characteristics of the environment, a basic tenet
of the electromagnetic compatibility documents. As more field experience is gained in applying these documents to
equipment design, the feedback loop can be closed to ultimately increase the reliability of new equipment at
acceptable costs, while present problems may also be alleviated based on these new findings in the area of
transient overvoltages.
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Paper presented at PQA'91 Conference, Gif-sur-Yvette, France, 1991 
 
 

 
 
 
Significance 
Part 8 – Coordination of cascaded SPDs 
 
The early nineties were marked by the emergence of concerns about the coordination of cascaded SPD in the midst 
of “common wisdom” that voltage surges impinging upon the service entrance of a building would inherently become 
less severe as they propagate and divide among the branch circuit of the installation.  That perception was reinforced 
by the publication in 1980 of an IEC Standard on insulation coordination that figured prominently a “staircase” of 
descending surge voltage levels.  As a result of that perception, proposals were made to provide a service entrance 
SPD with a limiting voltage higher than the limiting voltage of the SPDs installed at the point-of-use receptacles. 
 
Numerical simulations and measurements on actual SPDs demonstrated the pitfalls of that perception.  For an 
effective coordination to occur – service entrance SPD diverting the bulk of the surge current and point-of-use SPD 
mitigation as needed – the service entrance SPD cannot have a substantially higher limiting voltage than the point-of-
use SPD, lest the latter take on the bulk of the energy.  The inductance of the wiring between the service entrance 
can add some voltage drop between the two devices, so that an acceptable degree of coordination can still be 
achieved if the two device have equal limiting voltages.   
 
The redeeming effect of  the wiring inductance is of course dependent upon the waveform of the impinging current 
surge, as well as the length of the branch circuit.  The relationships of these parameters are explored in the 
computations and experiments reported in the paper. 
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Paper presented at PQA'92 Conference, Atlanta, 1992 
 
 

 
 
 
Significance 
Part 8 – Coordination of cascaded SPDs 
 
The early nineties were marked by the emergence of concerns about the coordination of cascaded SPD as the 
concept of “Whole-house protection” was gaining popularity.  However, it appeared that the selection of service 
entrance SPDs and point-of-use plug-in SPDs was not an integrated process, hence some possibility that the 
expected coordination might not be achieved.  On the other hand, if a well-designed combination could be 
implemented by a single authority responsible for the selection of the two devices, then the competing requirements 
for these to devices might be accommodated. 
 
The service entrance SPD is generally selected from the point of view of the utility, and therefore tends to be a 
rugged device with relatively high limiting voltage because of the desire to have a conservative maximum continuous 
operating voltage (MCOV).  On the other hand, the point-of-use SPDs, for those purchased independenly from the 
service entrance SPD, are generally designed to offer the lowest possible limiting voltage.  This relationship makes 
coordination difficult.  If the two devices are selected with the same limiting voltage (and thus comparable MCOVs), 
then the inductance separating the two devices can have a chance to decouple the two devices sufficiently to achieve 
a satisfactory coordination.  The inductance of the wiring between the service entrance can add some voltage drop 
between the two devices, so that an acceptable degree of coordination can still be achieved if the two device have 
equal limiting voltages.  The redeeming effect of the wiring inductance is of course dependent upon the waveform of 
the impinging current surge, as well as the length of the branch circuit.   
 
In this paper, the relationships of these parameters are explored by numerical simulations.  Cross-validation of 
simulation and measurements in actual circuits for typical applied surges was demonstrated in earlier papers so it 
was not repeated here. 
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Significance: 
Part 8 – Coordination of cascaded SPDs 
 
For a “cascade” of two MOV-based SPDs, the combined numerical modeling and the laboratory 
measurements cross-validate to provide information on the relationship of impinging waveform and 
amplitude, distance between the two SPDs, and relative values of the SPD limiting voltage. 
 
Results show that separate selection of the service entrance SPD and point-of-use SPD can produce an 
ineffective coordination, with the point-of-use SPD “protecting” the service entrance SPD and in so doing, 
take on the dissipation of a disproportionate part of the impinging surge energy. 
 
This situation make the case for giving careful attention to the selection of device parameters, such as 
providing the two devices from an authoritative source from which a well-engineered approach should be 
expected. 
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Significance 
Part 8 – Coordination of cascaded SPDs 
 
The goal of implementing a well-coordinated cascade of SPDs with simple MOVs at both the service entrance of a 
building and point-of-use (the latter typically by an add-on plug-in SPDs typical of what consumers purchase from 
electronic stores – the so-called “TVSS”) presents a dilemma because the service entrance arresters tend to be 
designed with conservative MCOV ratings (hence relatively high limiting voltages) while the TVSSs tend to be 
designed with the lowest possible limiting voltage.  Such relationship in the limiting voltages is the contrary of what 
is necessary to achieve coordination between the rugged service entrance arrester and the limited energy-handling 
capability of the TVSS. 
 
The situation has been created by the decision, early in the introduction of TVSSs and possibly motivated by the UL 
requirement to show the limiting voltage (with a misguided notion that a lower limiting voltage ensures better 
protection).  By now, this de facto presence of millions of low limiting voltage for the TVSS makes it practically 
impossible to achieve coordination if the twp SPDs consist of simple MOVs. 
 
Ironically, upon introduction of MOVs in the mid-seventies, residential-type service entrance arresters that consisted 
of a series combination of a gap and a silicon carbide varistor were replaced by simple MOV discs, viewed at the 
time as a significant improvement of the protective level provided by a service entrance arrester – hence the 
“revisited” aspect of this paper. 
 
A solution to this dilemma might be to design the service entrance as a gapped arrester that can relieve the TVSS 
from the major part of the energy-dissipation stress, while the de facto TVSS can still provide point-of-use surge 
protection for the connected loads. 
 
This paper was designated “High Interest Paper” by the Power Engineering Society 
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Reprint of paper presented at EMC Europe 2002, September 2002 
 
 
 
 
Significance 
Part 2 – Development of standards — Reality checks 
Part 4 – Propagation and coupling — Numerical simulations 
 
Most simulations performed to investigate the sharing (dispersion) of lightning current for the case of a direct flash to 
a building have focused on the role and stress of surge-protective devices (SPDs) installed at the service entrance of 
a building and their involvement in that part of the lightning current that exits the building via the power supply 
connection to the energy supply. 
 
The numerical simulations performed for this paper, based on a postulated waveform and amplitude suggested by 
current standards, include downstream SPDs, either incorporated in equipment or provided by the building occupant.  
The results show that a significant part of the exiting lightning current can involve those downstream SPDs with some 
likelihood that their surge withstand capability might be exceeded. Such a possibility then raises questions on the 
validity of the postulated amplitude in the face of the relatively rare occurrence of reported failures. 
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Abstract – This paper examines the sharing of 
lightning current associated with a direct flash to a 
building. This sharing involves not just those surge-
protective devices (SPDs) that might be installed at the 
service entrance, but also all SPDs involved in the exit 
path of the lightning current.  Such sharing might 
involve built-in SPDs of some equipment located close 
to the service entrance, but heretofore not included in 
numerical simulations performed by many researchers.  
From the numerical simulations reported in this paper, 
conclusions are offered that may influence the design 
and EMC testing of equipment, as well as the risk 
analysis associated with lightning protection. 

 
I.  BACKGROUND AND RATIONALE  
 
This paper offers additional information to the body of 
knowledge accumulated on how the lightning current of 
a direct flash, injected into the earthing system of a 
building, is shared among the many available paths 
towards intended or opportunistic earthing electrodes. 
 
Recent developments in the International Electro-
technical Commission (IEC) and the Surge-Protective 
Devices (SPD) Committee of the Institute of Electronics 
and Electrical Engineers (IEEE) have focused on the 
role of SPDs connected at the service entrance of a 
building in the case of a direct lightning flash to the 
building.  This scenario is described in IEC 61312-3 
(2000) [9], IEEE PC62.41.1 [12] and PC62.41.2 [13]. 
 
Prior to this new focus, most of the considerations on 
SPD applications were based on the scenario of surges 
impinging upon the service entrance of a building as 
they come from sources external to the building.  The 
new (additional) focus addresses the scenario of the 
earth-seeking lightning current as it is shared among the 
many possible paths to earth, including the deliberate 
and opportunistic exit paths of the building earthing 
system, services other than the power system 
connection and, mostly, the power supply connection.  
 
Quite independently from these lightning protection 
considerations, the IEC Subcommittee SC77B had 
developed a series of documents on the electromagnetic 
compatibility of equipment, IEC 61000-4-5, Surge 
withstand capability [8] in particular.  These documents 
were primarily concerned with immunity against typical 
disturbances, the rare case of a direct lightning flash to a 
building containing electronic equipment not   included.  
 
Increasing recognition of the need to include the 
scenario of a direct flash to a building – rare as it might 
be – has motivated the formation of an IEC Joint Task 

Force TC81/SC77B for the purpose of considering 
surge stresses on equipment higher than those currently 
described in the IEC document 61000-4-5 on immunity 
testing [8]. 
 
The purpose of the paper is to examine in detail the 
sharing of lightning current, not just by the SPDs at the 
service entrance, but also by all SPDs that might be 
involved in the exit path of the lightning current.  Such 
sharing might well involve SPDs incorporated in the 
equipment located close to the service entrance, but not 
always included in the numerical simulations that have 
been performed by many researchers (Altmaier et al., 
1992) [1]; (Standler, 1992) [23]; (Rakotomalala, 1994) 
[20]; (Birkl et al., 1996) [3]; (Mansoor and Martzloff, 
1998) [15]; (Mata et al., 2002) [19].  In its recent 
development of a Guide and a Recommended Practice 
on surges in low-voltage ac power circuits [13] the 
IEEE has refrained from identifying SPDs as being 
those that may be connected at the service entrance.  
Instead, it refers to "SPDs involved in the exit path" 
without reference to their point of installation.   
 
Given the tendency of equipment manufacturers to 
include an SPD at the equipment power input port, the 
issue of "cascade coordination" arises.  Several previous 
papers  (Martzloff, 1980) [17]; (Goedde et al., 1990) 
[5]; (Lai and Martzloff, 1991) [14]; (Standler, 1991) 
[22]; (Hostfet et al., 1992) [7]; (Hasse et al., 1994) [6] 
have explored the concept of cascade coordination 
involving two or more SPDs connected on the same 
power supply but at some distance from each other.   
 
The legitimate wish of the energy service providers to 
specify robust SPDs at the service entrance results in 
SPDs having a relatively high Maximum Continuous 
Operating Voltage (MCOV).  On the other hand, some 
equipment manufacturers tend to select SPDs with a 
low MCOV under the misconception that lower is better 
(Martzloff and Leedy, 1989) [18].  This dichotomy can 
result in a situation where the low-MCOV SPDs 
included in equipment might well become involved in 
the "exit path" and thus become overstressed in the case 
of a direct flash to the building.  This situation is made 
more complicated by the fact that commercial SPDs 
packages are assembled from typical distributors' 
supplies that can have an allowable tolerance band of 
±10% on the voltage-limiting rating. 
 
To explore the possibility and implications of a 
questionable coordination, numerical simulations were 
performed on a simplified model of a building featuring 
SPDs installed at the service entrance and SPDs that 
may be incorporated in equipment connected inside the 
building near the service entrance. 



II.  NUMERICAL SIMULATIONS 
 
II.1  Basic circuit 
 
Figure 1 shows a simplified building power system that 
includes the key elements of this scenario:  the building 
earthing system and all earthing electrodes, with the 
corresponding exit paths via the service-entrance SPDs 
and a built-in SPD provided at the power port of a 
typical item of electronic equipment.  In this example, 
these SPDs are metal-oxide varistors (MOVs) with 
typical voltage ratings (150 V at the service entrance 
and 130 V in the equipment) selected for a 120/240 V 
residential power system.  (The conclusions obtained 
for this type of power system will also be applicable to 
240/400 V systems.)   
 
Numerical analysis of the circuit behavior by EMTP [4] 
allows inclusion of the SPD characteristics as well as 
the significant R and L elements of the wiring, with 
injection of a stroke current of 100 kA 10/350 µs at any 
selected point – the earthing system in this case.  The 
selection of a 100 kA peak is consistent with the 
postulate made in many published simulations, but 
might be questioned on the basis of field experience and 
lightning detection statistics, as will be discussed later 
in this paper. 
 
In Figure 1, the neutral is defined as part of a "multiple-
grounded neutral" system (TN-C-S), with distributed R 
and L elements between its earthing electrode 
connections. The R and L values for the cables used in 
the numerical simulation, but not shown in the figure to 
avoid clutter, were selected to emulate the typical wire 
diameters used in low-voltage power distribution 
systems and building installations. 
 

Previous studies (Birkl et al., 1996) [3]; (Mansoor and 
Martzloff, 1998) [15] have validated the intuitive 
expectation that the tail of the 10/350 µs waveform 
often postulated for simulations will be shared among 
the available paths simply according to the relative 
values of resistance in the paths leading to the earthing 
electrodes.  This fact is apparent in the results of Figure 
2, for example at the 350 µs time: when inductive 
effects have dwindled, the current IH in the 10-Ω 
earthing resistance of the building is ten times smaller 
than the total current exiting the building [IN+IL1+IL2] 
toward the power distribution system in which multiple 
earthing electrodes offer an effective earthing resistance 
of only 1 Ω.  It is also worthy to note that this sharing is 
controlled by the relative values of the resistances, so 
that any earth conductivity differences associated with 
local conditions will wash out. 
 
The combination of the service-entrance 150-V MOV 
on Line 2 and the 130-V MOV incorporated at the 
power port of the equipment constitutes a so-called 
"cascade".  When two such cascaded SPDs are to be 
coordinated, a decoupling impedance must be provided 
between the two SPDs so that the voltage drop caused 
by the current flowing in the decoupling impedance – in 
this example the impedance of the 2,5 mm2 diameter 
wires – and added to the limiting voltage of the 130-V 
MOV, will cause enough of the current to flow through 
the 150-V MOV to reduce stress on the 130-V MOV. 
 
The simulation was performed for three values of the 
impedance (length) of the connection, i.e., 0,1 m, 1 m, 
and 10 m to assess the effect of this impedance for 
practical situations.   Figure 3 shows the results for 
these three cases and Table 1 shows the resulting energy 
deposition in the respective MOVs.

 
 

 
 
 
 

Figure 1   Simplified building schematic with service-entrance SPDs, one built-in equipment SPD, and 
multiple-grounded power distribution system in case of a direct lightning flash to the earthing system 
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Legend 

IO: 100 kA, 10/350 µs stroke to the building earthing system 
IN: current exiting via the neutral of the power supply 
IL1, IL2: current exiting via the two lines of the power supply 
IH: current into the building earthing electrode(s) 

Vertical scale: current in kA – Horizontal scale: time in µs 
 

Figure 2 – Sharing of the lightning current among 
available paths to earth electrodes 

 
In the traces of Figure 3, the total current in Line 2 (sum 
of the two currents in the two MOVs) remains 
essentially unchanged for the three combinations, but 
the sharing of the current between the two MOVs is 
significantly affected. 
 
Figure 3a, with only 0,1 m of separation, is not a 
practical example of connection of equipment that close 
to the service entrance – except perhaps an electronic 
residual current device incorporated in the service 
panel.  The two other figures, 3b and 3c, show how the 
130-V MOV that took the largest part of the current in 
the case of Figure 3a, now takes on less as separation 
length increases. An interesting situation develops as 
the current flowing in the 10-m line to the 130-V MOV 
stores energy that will cause a stretching of the current 
in the 130-V MOV long after the 150-V MOV current 
has decayed.  This is significant because the total 
energy deposited in the MOVs is the criterion used for 
coordination, even though the current in the 130-V 
MOV could be lower than the current in the 150-V 
MOV.  Table 1 shows how this energy sharing changes 
with the length of the decoupling connection, according 
to the integration of the varistor currents and voltages 
obtained from EMTP. 

 
Table 1 – Sharing energy between MOVs 

for three different connection lengths 
 

Energy deposition (joules) SPD 0,1 m 1 m 10 m 
150-V MOV 620 1090 2470 
130-V MOV 2560 2030 890 

 
These energy levels might be acceptable for a 150-V 
MOV sized for service entrance duty, but the 890-joule 
deposition into the 130-V MOV incorporated in the 
equipment exceeds common-wisdom ratings for such  
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a) 0,1 m connection 
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b) 1 m connection 
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Figure 3 – Sharing of lightning stroke current 
 
devices.  This finding then raises a question on the 
effectiveness of a cascade for the case of direct flash to 
the building.  In an actual installation, there would be 
more than one piece of equipment, presumably each 
with a 130-V built-in MOV at the power port. One 
might expect that some sharing among these multiple 
SPDs would reduce the energy stress imposed on these 
devices.   



To explore this situation, an additional simulation was 
performed for three branch circuits, respectively 10 m, 
20 m, and 30 m, each of them supplying equipment 
incorporating a built-in 130-V MOV.  Figure 4 shows 
the sharing of current among these three MOVs and the 
150-V service entrance MOV, and Table 2 shows the 
energy deposition. 
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Table 2 – Energy sharing among MOVs 

Branch circuit length and energy 

deposition into three 130-V MOVs 

10 m 20 m 30 m 

Service entrance 

150-V MOV 

620 J 370 J 280 J 1930 J 
 
                                   
II.2  Effect of manufacturing tolerances on 
commercial-grade metal-oxide varistors 
 
The simulations discussed so far were performed by 
postulating that both the 150-V MOV and the 130-V 
MOV had their measured voltage limiting at the 
nominal value as specified by typical manufacturer 
specifications.  Such a postulate is of course difficult to 
ensure in the reality of commercial-grade devices.  For 
instance, the nominal voltage-limiting value of MOVs 
rated 130 V rms is 200 V, with lower limit of 184 V and 
upper limit of 220 V.  To check that aspect of the 
problem, an arbitrary lot of 300 devices rated 130 V rms 
was purchased from a distributor and the actual 
measured voltage-limiting value at 1 mA dc was deter-
mined in accordance with IEEE Std 62.33-1994 [11]. 
For this lot, the standard deviation (sigma) was found to 
be 8 V. 
                                                      
On the basis on these measurements and to give an 
indication of the significance of tolerance effects, the 
computations reported for Figure 3c (10 m separation) 
were repeated, still with a 150 V MOV at the service 
entrance, but with varistors at ±1 sigma of the 130 V 
rms rating, that is, 122 V and 138 V rms.  The results 
are shown in Table 3. 

 Table 3   Energy sharing for three values of the 
equipment built-in MOV (10 m separation) 

                                                  
Energy deposited  (J) Equipment 

MOV rating 
(V rms) 

Equipment 
MOV 

150-V service 
entrance MOV 

122 915 2320 
130 890 2890 
138 750 2650 

 
These results illustrate the significance of tolerances in 
a situation where the difference between the two SPDs 
of the cascade is not large, because of the de facto 
situation of low values of MCOV that the industry has 
unfortunately adopted.  Of course, if tolerances were 
also taken into consideration for the service entrance 
MOV, the extremes of distributions for both MOV 
would make an effective coordination between a 
nominal 150-V MOV and a nominal 130-V MOV even 
more problematic. 
 
                                   
II. 3  Nonlinearity of circuit elements 
                                   
Most of the reported simulations, as cited above, have 
been performed with a conservative postulate of a 100 
kA 10/350 lightning discharge.  The median of the 
current peaks compiled in the seminal Berger et al. 
paper [2] is only 20 kA.   Occasional reservations have 
been voiced on the validity of these data collected with 
technology dating back to the 1970’s.  A recent (July 
2000) actual case history was communicated to the 
authors by a colleague for two major lightning storms 
recorded in the area of Tampa in Florida by means of 
the Lightning Detection System [24], during which over 
30 000 flashes were detected in a period of less than 12 
hours, with only one at the 150 kA level, and a median 
of 20 kA, confirming the Berger at al. data.   
 
One could expect that the dispersion of the lightning 
current that results from the combined action of linear 
elements (resistance and inductance) with nonlinear 
components (MOVs) might produce a different sharing 
of the current as the decoupling element is linear but the 
SPDs are nonlinear.  To explore this hypothesis, the 
computations for the case of Figure 4 and Table 2 were 
repeated, for peak currents of 100 kA (the original value 
of the computation), 50 kA, and 25 kA (about the 
median of the statistics).  Table 4 shows the results of 
these computations.  It is interesting to note that as the 
applied stroke is decreased 4 to 1 (from 100 to 25), the 
total energy deposited in the varistors is decreased by a 
factor of 3200/610 = 5.2. This relative greater decrease 
is caused by the larger portion of the current exiting via 
the linear-path neutral, further relief for all the SPDs 
involved in the exit path. 
                                   

Table 4   Nonlinear effects on current sharing 
Branch circuit length and 

energy deposited into  
three 130-V MOVs 

10/350
stroke 
(kA) 

10 m 20 m 30 m 

Energy 
into 

service 
entrance 
150-MOV 

Total 
energy 
in the 
MOVs 

100 620 J 370 J 280 J 1930 J 3200 J 

50 329 J 215 J 179 J 700 J 1423 J 

25 170 J 120 J 90 J 230 J 610 J 



III.  DISCUSSION  
                                   
We have made all these computations based on 
postulating that the insulation levels are sufficient to 
prevent a flashover that would drastically affect the 
continuing energy deposition in the downstream SPDs. 
We have not included the limits of energy handling of 
the devices, which of course should be compared with 
computed deposited energy levels in a practical case.  
 
Another set of readings from the EMTP computations 
confirmed that the presence of SPDs at the critical 
points prevents such overvoltages from occurring (as 
long as the SPDs can carry the resulting currents) 
                                   
Not surprisingly, the results of the simulation confirm 
that the sharing of the lightning current occurs in 
inverse ratio of the resistances leading to the earthing 
electrodes after the initial phase of the 10/350 µs stroke.  
Likewise, one can expect that inductances will limit the 
current flow so that low-inductive paths, such as 
intended and opportunistic earth electrodes of the 
building itself, compared to the longer lines of the 
power supply, will carry a larger share of the total 
current during the initial phase of the current.  This 
effect is clearly visible on the IH of Figure 2, for the 
relatively slow rise time of 10 µs of a first stroke.  One 
may expect that for the subsequent strokes, or the 
flashes associated with triggered lightning experiments 
that have shorter rise times (Rakov et al., 2001) [21], 
this effect will be even more apparent. 
                                   
An important finding – predictable on a qualitative basis 
but heretofore not quantified for the case of a direct 
lightning flash to buildings containing electronic 
equipment – concerns the cascade coordination of built-
in SPDs in the equipment.  From the simple examples 
presented, it appears that a cascade of a robust service-
entrance SPD and a built-in SPD sized for limited 
energy-handling capability, according to the common-
wisdom practice, might well be a delusion.   
 
A solution to the difficult coordination could be to 
replace the all-MOV SPD at the service entrance with a 
combined series gap-varistor device (Mansoor et al., 
1998) [16].  Such a device would also alleviate the 
concerns about the temporary overvoltage problems 
associated with MOV-only SPDs.  Sparkover of the gap 
during the initial rise of the lightning current (when the 
coordination by means of the decoupling inductance 
occurs) will invite the remainder (continuing rise and 
tail) of the surge current exiting via SPDs to use the 
service entrance SPD rather than the simple and less 
robust built-in MOVs downstream. 
 
Last but not least, the practical question remains open 
on the need to provide surge protection against worst 
cases – the combined worst case of a direct flash to the 
building and the high-level 100 kA stroke, which is 
only at the 4% probability, according to the Berger et al. 
data [2] and even lower in the yet-anecdotal case of the 
Tampa Bay lightning storm [24]. The nonlinearity effect 
presented in II.3 adds further credibility to the overall 
need to make reasonable risk assessments of cost-
effectiveness before specifying high surge level 
requirements, both for the service entrance SPDs and 
for built-in SPDs in connected equipment. 
 

IV.  CONCLUSIONS 
 
1. When accepting the postulate that the reference 
parameter of a direct lightning flash to a building should 
be a 10/350 µs current with a peak of 100 kA, the 
numerical simulations performed for a simplified 
system with one surge- protective device installed at the 
service entrance, and one or more built-in SPD in 
downstream equipment indicate that the downstream 
SPD is very likely to be overstressed and fail, most 
likely catastrophically. 
2. There are several possible explanations for the 
apparent contradiction between a prediction of down-
stream equipment failures based on this postulated 
lightning parameters, and equipment field experience 
that does not report such frequent failures, although of 
course anecdotes abound.                                 
• The occurrence of a direct flash to a building can 

cause such extensive damage that a post-mortem for 
investigating the specifics of a prevailing ineffective 
coordination is not performed at that time and the 
issue is ignored. 

• Enough uncontrolled clearance flashovers occur in 
the installation to provide significant relief for any at-
risk SPDs incorporated in downstream equipment. 

• In an installation where many built-in or plug-in 
SPDs are present, the sharing illustrated by Figure 4, 
combined with a low probability of a 100 kA stroke, 
might reduce the stress on downstream devices to a 
value within their capability.  In particular, many 
commercial plug-in SPDs advertise capabilities of 
hundreds of joules, unlike the 20 joules of a single 
MOV, which might be provided at the input port of 
electronic equipment. 

• Insufficient field failure data have been obtained, 
compiled, shared, and published to enable realistic 
assessment of frequency and severity of occurrences 
involving an unsuccessful cascade coordination. 

                                   
3. It is impractical at this point to mandate high energy 
handling capability for built-in SPDs.  Such a move 
might meet with strong objections from manufacturers 
whose products have satisfactory field experience, and a 
risk analysis might show it to be not cost-effective. 
 
4.  Economic and political realities related to the type 
and mission of the installations to be protected should 
be kept in mind.  Clearly, mass-market applications 
such as cost-conscious consumers, in a framework of 
regulated or unregulated installations, are different from 
bottom-line-conscious industrial applications, and even 
more so in the case of national assets – be they cultural 
or military. 
 
5. Another approach for manufacturers might be to 
avoid placing low MCOV varistors at the input port of 
their equipment.  Rather, they should select an SPD 
with an MCOV and resulting surge-protective level as 
high as their equipment can inherently stand.  This is a 
“selfish” approach which is mentioned here half-
seriously, half-facetiously: there are enough low MCOV 
SPDs installed by users or included in other equipment 
in a typical system that those unfortunate low-MCOV 
devices will take up the stress, leaving unscathed the 
equipment wisely provided with high MCOV SPDs! 
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2002 REMARKS 
 
 
As stated in the Foreword (on following Page 3), this Annotated Bibliography was compiled in 
1992 in support of a Working Group of the IEEE Surge-Protective Devices Committee engaged 
in the development of an Application Guide on Low-Voltage Surge-Protective Devices, and an 
IEC project about to be launched, involving five Technical Committees or Subcommittees of the 
IEC for developing a “pilot” Technical Report or Standard on the application of low-voltage 
surge protective devices (SPDs), intended in particular to focus on the coordination of cascaded 
SPDs, an issue that was emerging at the time.  To the author’s knowledge, only few additional 
papers were published on the subject after 1992, see the file “Citations Part 8” that is included as 
Annex A of this Part 8. 
 
Both documents IEC and IEEE eventually reached maturity and, ten years later, the IEC has 
published its document, and the IEEE has conducted a ballot on its document.  They can be 
obtained from their respective sponsoring organizations: 
 
IEEE PC62.72-2002 – Guide for the application of surge protective devices for low-voltage 
AC power circuits 
Ballot in progress (December 2002, publication expected mid-2003) 
 
Abstract:  Information is provided to specifiers and users of surge protective devices (SPDs) 
about the application considerations of SPDs associated with power distribution systems 
within North America.  This guide applies to SPDs to be connected to the load side of the 
service entrance main over current device of 50 or 60 Hz ac power circuits rated at 100-
1000V rms.  The effects and side effects on the presence and operation of SPDs in low-
voltage power distribution systems are described.  The coordination of multiple SPDs on the 
same circuit is described. 

 
 

IEC/TR 62066 (2002-06) – Surge overvoltages and surge protection in low-voltage a.c. 
power systems - General basic information 

 
Abstract:  Presents a general overview on the different kinds of surge overvoltages that can 
occur on low-voltage installations. Typical surge magnitude and duration as well as frequency 
of occurrence are described. Information on overvoltages resulting from interactions between 
power system and communications system is also provided. Additionally, general guidelines 
are given concerning surge protection means and systems on the basis of availability and risk 
considerations, including interactions and the need for coordination and consideration of 
temporary overvoltages in the selection of surge-protective devices.  
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